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1 Laboratoire de Physique de l’Etat Condensé, UMR CNRS 6087, Université du Maine,
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Abstract
Those nanocrystalline materials which consist of ferromagnetic nanograins
embedded in a ferromagnetic matrix were modelled as a cubic lattice composed
of a central sphere with strongly coupled spins surrounded by weakly coupled
spins. The magnetic behaviour was studied by Monte Carlo simulation,
especially the low temperature spin ordering and features exhibited in the
temperature range between the Curie temperatures of the two phases. The
magnetization and magnetic susceptibility are calculated as a function of
temperature for different values of the interfacial exchange interactions. It
is shown that the exchange coupling between matrix and nanograin influences
the magnetic properties of the nanograin, the matrix and the interfacial regions
differently. The magnetic behaviour of different regions has been explained in
terms of a polarization mechanism acting on the surface and in the core, leading
to magnetic correlation between the spins. Such features are quite consistent
with the experimental results obtained on nanocrystalline alloys.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The magnetic properties of nanocrystalline materials have been intensively studied, both
experimentally [1–6] and theoretically [7–10], mainly due to their potential technological
applications and their two-phase behaviour, respectively. Nanocrystalline alloys, like Finemet
or Nanoperm, obtained by the annealing of amorphous precursors consist of nanograins
dispersed within a ferromagnetic amorphous matrix. A key issue for understanding the
magnetic macroscopic properties, such as magnetization or susceptibility, would be to
investigate the contributions arising both from the nanograins and from the amorphous residual
matrix, but also to elucidate the role played by the nanograin surface and the interfacial
zone between the nanograins and the matrix. 57Mössbauer spectroscopy studies of Finemet-
type [2] and Nanoperm-type [3–6] nanocrystalline alloys provide evidence for an interfacial
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zone between the nanograins and the amorphous residual matrix. This interface features
a disordered atomic structure and spin-glass-like behaviour and has a chemical composition
which differs strongly from those of both the nanograin and the matrix [6]. In addition, contrary
to the low-temperature case where both intergranular and nanocrystalline grains behave as
strongly coupled ferromagnets, the high temperature magnetic behaviour, i.e. above the Curie
temperature of the amorphous matrix, is strongly dependent on the crystalline volume fraction.
Superparamagnetic grains are observed for low crystalline fractions while penetrating fields
originating from grains, tend to polarize the amorphous matrix for high crystalline fractions,
preventing a purely paramagnetic state for the amorphous matrix [11–13].

Another key issue in understanding the magnetic properties of such systems is related to the
surface and finite-size effects. Both effects have a stronger influence on the magnetic properties
of the assemblies of nanograins, either isolated or interacting, as the size of the nanograins
decreases. Several theoretical studies of the magnetic behaviour of oxide nanoparticles have
been reported [7–10]. It has been shown that broken exchange bonds at the nanoparticles’
surface, resulting in lower coordination compared to the bulk, give rise to a surface spin
disorder and hence increased anisotropy [7]. The influence of the competition between
bulk and surface energies resulting in finite-size effects on the magnetic behaviour of oxide
nanoparticles have also been shown [7, 8]. The method of Monte Carlo simulation of low-
temperature spin ordering has been employed for studying the surface and finite-size effects
in oxide nanoparticles [9, 10]. Nevertheless, no theoretical studies on the magnetic properties
of nanocrystalline soft magnetic alloys by Monte Carlo simulation have yet been reported,
to our knowledge. Unlike micromagnetic [14, 15], or molecular field calculations [16], the
Monte Carlo simulations take into account the atomic structure of the lattice and the short-range
nature of the exchange interactions.

In the following, we present an approach, based on Monte Carlo simulation using
a classical Metropolis algorithm, to model the magnetic properties of one ferromagnetic
nanograin immersed in a ferromagnetic matrix. Different contributions to the total
magnetization, arising from the core and surface of the nanograin, as well as from the interface
between the nanograin and the matrix and from the matrix itself, will be shown. Moreover, the
influence of the magnetic exchange coupling between the atoms in the surface and interface on
the overall magnetization, as well as the magnetization of different regions, will be emphasized
first and then the interfacial anisotropy will be discussed in conjunction with the occurrence
of the canted interface layer.

It is important to emphasize that the structural and microstructural complexity of the
nanocrystalline alloys prevents a simple structural model from being proposed. However,
the present study aims only to show some phenomena usually observed on nanocrystalline
alloys, especially those related to magnetic coupling between the two phases above the lowest
Curie temperature [2]. Neither the chemical composition, nor the disordered structure of the
amorphous phase are taken into account in the present cubic model. The magnetic parameters
are chosen with values which differ from those characteristic of nanocrystalline alloys, but
allowing some interesting features to be detailed [17].

2. Framework

Our starting model consists of a spherical nanograin embedded in a matrix of cubic shape. This
cubic box contains 153 sites on a simple cubic lattice, i.e. each i site has 6 nearest neighbours. To
each cubic lattice site we assign a classical spin Si which interacts with its j nearest neighbours
via an exchange coupling constant Ji j. Inside this box, we define a sphere of radius R (in units of
the interatomic structure). The sites belonging to the sphere (nanograin) are denoted as A sites,



Monte Carlo simulation of magnetic properties in nanocrystalline-like systems 6333

AA Type 

AB Type 

BA Type 

BB Type 

Figure 1. Middle plane of the 153 cubic box showing different regions: AA—nanograin; BB—
matrix; AB—nanograin surface and BA—matrix–nanograin interface.

while the others, belonging to the matrix, are denoted as B sites. Moreover, we define two non-
equivalent atomic layers at the nanograin surface: the first one consists of A sites having at least
one first-nearest-neighbour of B type and denoted AB and the other consists of B sites having
at least one first-nearest-neighbour of A type, denoted BA, as is shown in figure 1. These two
atomic shells represent the nanograin surface and the matrix–nanograin interface, respectively,
featuring magnetic behaviours different from that of the bulk (AA and BB regions). Taking into
account the broken symmetry (lower coordination) for the sites in the surface, which leads to
a distribution of magnetization over the whole system, one has to consider JAA �= JBB �= JAB

(for reasons of symmetry JAB = JBA). The macroscopic thermodynamic properties, such
as the temperature dependence of magnetization, specific heat and magnetic susceptibility
for our system, are obtained from a Heisenberg-type Hamiltonian which contains several
terms corresponding to different energy contributions: exchange, anisotropy, magnetostatic,
magnetoelastic, dipolar and thermal energy. In the present study, we only consider the first
two prevailing energy contributions: the Hamiltonian defined at a given site i is thus

Hi = −
∑
j∈V

Ji j �Si · �Sj − KV (�Si,V · ŷ)2 − KS(�Si,S · n̂)2. (1)

V is the nearest neighbourhood of site i , Ji j are the exchange coupling constants, Si and Sj

are the spins corresponding to the i and j sites, Ki is the site-dependent anisotropy constant
(Ki = KS for AB sites and Ki = KV elsewhere) and θi is the angle between the easy axis and
spin direction at each site, respectively.

For our simulations, we have chosen a system composed of one ferromagnetic nanograin,
consisting of strongly coupled spins, embedded in a ferromagnetic environment with weakly
coupled spins, typical of an amorphous residual matrix in a nanocrystalline soft magnetic alloy.
The size of the cubic box was chosen to be 153 (3375 sites) and the grain had different radii,
ranging from 4 (N ≈ 268 sites) to 7 (N ≈ 1436 sites). Those values correspond to an atomic
crystalline fraction of 7 and 40%,respectively. The exchange coupling constants considered for
calculations were JAA = 3 (inside the nanograin) and JBB = 1/2 (inside the matrix), a choice
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consistent with two phases exhibiting significantly different Curie temperatures. The high ratio
JAA/JBB thus allows us to separate clearly the two phases because the magnetic behaviour is
worth discussing for a temperatures range between the two Curie temperatures. The exchange
coupling constant between the nanograin and the matrix JAB ranges from 0.01 to 50. It is
obvious that one expects JAA > JAB > JBB in nanocrystalline alloys. Nevertheless, JAB values
over a rather large range were systematically considered to have a deep insight into the coupling
exchange between the magnetic nanograin and matrix. It is important to emphasize that this
model can be extended to different systems, including both strongly coupled magnetic and
uncoupled systems such as exchange spring magnets (α-Fe/Nd2Fe14B), magnetic multilayers
or magnetic nanoparticles dispersed into a diamagnetic or magnetic matrix. In addition, the
present simple model is built on an assembly of magnetic moments, assumed to be the same
in both grain and matrix, with one single interaction exchange value.

The calculations were performed using periodic boundary conditions. In order to obtain
accurate magnetic data, one has to consider all of the above contributions to the Hamiltonian. In
our case, the magnetic exchange interaction is considered only over the nearest neighbourhood
and makes the strongest contribution to the energy. We have neglected the dipolar term in
order to clarify the influence of the exchange coupling on the magnetic behaviour of each
region. Moreover, the anisotropy is considered uniaxial along the y axis and equal for all
sites, KV = 0.3, while surface anisotropy was considered radial to the surface and equal to
KS = 3.0. The corresponding sites are located near the interface, i.e. two layers: one layer
from the crystalline grain and one layer belonging to the matrix. Since no values of interface
anisotropy can be found in the literature, to our knowledge, one can suggest the interface
anisotropy is slightly larger than the bulk magnetocrystalline anisotropy but lower than the
surface anisotropy, which is of the order of 0.01–1 mJ m−2 and 1–10 MJ m−2, respectively, in
cubic ferromagnets. We thus consider KS/KV = 10 in the present study.

The energy given in equation (1) is minimized by means of the Monte Carlo procedure [18].
During the simulation, Monte Carlo steps are used per spin with a random walk while angles
are uniformly distributed over 4π . Starting with a random spin configuration at a temperature
much higher than TC, the energy is minimized using simulated annealing with a decreasing
exponential law for temperature T α with α = 0.96 while thermodynamic quantities, such as
magnetization, susceptibility and specific heat, can be derived as a function of temperature [18,
19]. By neglecting the dipolar term we thus use less CPU time for each computation. This gain
thus allows a higher number of Monte Carlo steps (2 ×105 steps per spin and per temperature)
to be taken in order to obtain better statistics for a more accurate estimation of thermodynamic
quantities. Simulation of magnetic properties of the above described system considering
different surface and volume anisotropies are then reported. The value of surface anisotropy
was chosen to be extremely high to point out its effect on the magnetic arrangement at the
interface between the nanograin and the matrix.

3. Results and discussions

We have represented, in figures 2 and 3, the temperature dependence of normalized
magnetization of the 153 site cubic box, with different values of nanograin radius (comprised
between 4 and 7) for several values of JAB (exchange coupling between the matrix and
the nanograin) ranging from 0.01 up to 50. All the curves show a two-phase behaviour,
typical for nanocrystalline soft magnetic alloys. The two contributions which show distinct
behaviour could unambiguously be attributed to the matrix and the nanograin, respectively.
For low temperatures, the magnetization decreases sharply with increasing temperature, up to a
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Figure 2. Temperature dependence of normalized magnetization of the system for a nanograin
radius R = 4, 5, 6 and 7 and for a matrix–nanograin exchange coupling JAB = 0.01 and 3.

temperature which is identified as the Curie temperature of the matrix (hereafter denoted T M
C ).

Above T M
C , the magnetization changes in slope and decreases slowly, typical for ferromagnetic

materials, up to a temperature value identified as the Curie temperature of the nanograin
(hereafter denoted T N

C ). It is worthwhile noting that the magnetization apparently does not
vanish at temperatures above T N

C . This is an illustration of the size effects acting on the
magnetic state of the system. When one deals with finite-sized magnetic objects, finite-size
effects are particularly severe in the critical region near the phase transition [20]. Consequently,
the magnetic correlation established through exchange coupling between reversal spins does
not completely disappear even at temperatures above T N

C , where thermally activated magnetic
fluctuations should prevent the local alignment of the spins. The magnetization curve with
JAB = 0.01 shows a very sharp transition between the matrix and the nanograin contributions,
typical for a system with completely decoupled magnetic phases. With increasing JAB, the
transition between the two contributions becomes more and more smooth and one can observe
that the exchange coupling in the surface influences the matrix and the nanograin differently.
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Figure 3. Temperature dependence of normalized magnetization of the system for a matrix–
nanograin exchange coupling JAB = 0.01, 3, 10 and 50 and for nanograin radius R = 4 and 7.

The magnetic susceptibility χV is calculated using the following relationship:

χV = 1

V

∂M

∂T
= 〈M2〉 − 〈M〉2 (2)

where M corresponds to the total magnetization and 〈 〉 means the thermal averaging over
all configurations. The temperature dependence of the susceptibility, which is plotted on a
logarithmic scale in figure 4, exhibits two peaks, corresponding to the contributions of both
the matrix and the nanograin, in agreement with a two-phase behaviour. One can see that
on increasing the coupling between the spins in the interface, the relative intensity of the
peak corresponding to the matrix contribution decreases while the relative intensity of the
peak corresponding to the nanograin contribution increases. The peaks occur at temperatures
identified as T M

C and T N
C , respectively, which were estimated by numerical fitting of both the

susceptibility and the total magnetization curves, the results being similar. For ferromagnetic
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Figure 4. Temperature dependence of the susceptibility (in logarithmic scale) for the R = 7
nanograin immersed in the 153 cubic box for a matrix–nanograin exchange coupling JAB = 0.01,
3, 10 and 50.

single-phase materials it is well known that the spontaneous magnetization decreases with
temperature as follows:

Ms(T ) = Ms(0)

[
1 − T

TC

]β

(3)

where Ms(0) is the saturation magnetization (magnetization at 0 K), TC is the Curie temperature
and β is the critical exponent. A typical value of 0.36 is expected for β in the case of
ferromagnetic materials. Let us remark that the critical exponents describe the divergence of
thermodynamic quantities, such as magnetization or susceptibility, at the critical points, such
as Curie temperatures. Using the finite-size scaling theory, for a finite lattice with linear size
L, the critical temperature is shifted compared to an infinite lattice by L−1/v ≈ |TC(L) − TC|,
with L being the size of the system (in our case, the size of the cubic box) [20]. Consequently,
it allows the critical temperature and critical exponents to be estimated.

Applying equation (3) to both the matrix and the nanograin, the magnetization curves were
fitted by considering for both the matrix and the nanograin only the temperature regions not
too far below TC. This fitting allows a rough estimation of the T M

C and T N
C . We plot in figure 5

the Curie temperature for the nanograin versus the exchange coupling on the surface JAB for
nanograin sizes ranging from R = 4 to 7. The general trend for the T N

C is almost the same
whatever the nanograin size, i.e. a slight decrease up to an exchange coupling value JAB ≈ 3,
which equals the exchange coupling constant JAA of the nanograin itself, then an increase with
a further increase of JAB. Values of JAB greater than three times the exchange coupling in
the nanograin JAA are unphysical, but they have been considered nevertheless to observe the
general trend of the profiles. For our system, the region of interest is then for JAB ranging
between 0 and 10. For JAB = 0.01, when the nanograin is almost completely decoupled from
the matrix, the TC of the nanograin (which means here all the A sites) is higher than the value
expected if all the A sites would have the same exchange coupling constant. This could be due
to the lack of magnetic correlation between the spins in the nanograin surface associated with a
mechanism of depolarization of the nanograin core induced by the surface layer. By increasing
the exchange coupling JAB up to the JAA value, the T N

C decreases towards the minimum value
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Figure 5. Curie temperature of the nanograin T N
C versus exchange coupling JAB for different

nanograin radii. Inset: same curves plotted on an enlarged scale.

which corresponds to the situation where all the A spins are exchange-coupled with the same
strength: in other words, when the surface layer does not influence the nanograin core. When
the exchange coupling in the surface JAB further increases, the T N

C increases also. In this
case the surface layer, being more strongly coupled than the core of the nanograin, induces
stronger magnetic correlation between spins in the core, which indicates the polarization of
the nanograin core by the surface layer.

The ‘concavity’ of the profile centred at JAB ≈ JAA = 3 is more pronounced for small
nanograin sizes and flattens as the nanograin radius increases. This is mainly due to the effect
of the ratio between the number of sites in the surface and the number of sites in the core
Ns/Ncore. When the nanograin radius increases, the ratio Ns/Ncore decreases, which leads to a
smaller effect of polarization–depolarization of the core by the surface layer when varying the
exchange coupling JAB, and thus less pronounced concavity in the region centred at JAB ≈ 3.
This behaviour is independent of the way of numerical fitting and is preserved for the T N

C
values obtained from the refinement of susceptibility curves.

In figure 6, the Curie temperature of the matrix T M
C is plotted against the exchange coupling

JAB in the surface for different nanograin radii. All the curves show a sharp increase of TM
C from

the initial value corresponding to the almost decoupled system. Then the dependence reaches
saturation for a maximum value for high values of JAB. Nevertheless, the initial increase is
sharper as the nanograin size increases. This increase of T M

C could be explained as previously
by a mechanism of polarization of the matrix by the interfacial layer between the matrix and
the nanograin (BA region, i.e. the B atoms which have at least one A atom as first-nearest-
neighbour). The increase in T M

C is larger, for any values of JAB, as the radius of the nanograin
increases (meaning that there will be less atoms in the matrix and thus a higher ratio between
the number of sites in the interface and the number of sites in the matrix NBA/NBB). It is also
worthwhile to note that the curves reach saturation at higher values of JAB, as the radius of
the nanograin increases. For small nanograin radii (small NBA/NBB ratio) the polarization of
the matrix by the stronger magnetically correlated interfacial region (BA region) is sudden,
T M

C sharply increases for JAB = 1 and then the further increase in T M
C , for higher values of

JAB, is almost negligible. In contrast, for larger nanograin radii (higher NBA/NBB ratio) the
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Figure 7. Temperature dependence of normalized magnetization of the nanograin core MAA for a
nanograin radius R = 6 and matrix–nanograin exchange coupling JAB = 0.01, 3, 10 and 50.

polarization of the matrix by the BA region is gradual and the saturation is reached at higher
values of JAB.

4. Influence of exchange coupling

4.1. AA (ferromagnetic nanograin core)

Figure 7 shows the temperature dependence of the normalized magnetization for the nanograin
core MAA for the case R = 6 for different exchange couplings in the surface JAB. The curves
are typical for a ferromagnetic single-phase material with a decrease to zero at the TC of the
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Figure 8. Temperature dependence of normalized magnetization of the matrix MBB for a nanograin
radius R = 6 and matrix–nanograin exchange coupling JAB = 0.01, 3, 10 and 50. Inset: values of
MBB corresponding to the TC of the matrix for the almost decoupled system (JAB = 0.01) plotted
versus JAB.

nanograin core. The decrease is sharp for low values of JAB and becomes sluggish as JAB

increases. With increasing the exchange coupling JAB the TC of the nanograin core follows the
same trend as described before for the TC of the whole nanograin (T N

C ) estimated by numerical
fitting of the total magnetization curves (figure 3). Nevertheless, the increase of TC of the
nanograin, which is surprisingly high, is not consistent with experimental features. Indeed,
the completely paramagnetic matrix does produce a decrease of both the Curie temperature
and magnetization of the nanocrystalline grain through the presence of superparamagnetic
fluctuations when the crystalline volumetric fraction is rather low, or does not influence the
magnetic characteristics of the nanocrystalline grain, as observed experimentally (see [2] and
references therein). The present results are thus not clarified. One finally observes for small
nanograin radius that, at temperatures above TC, the magnetization fluctuates. Note that, for
higher nanograin radius, these fluctuations are less important because of the larger number of
spins in the nanograin core. The presence of these fluctuations is thus attributed as a direct
consequence of the finite nanograin size effects.

4.2. BB (ferromagnetic matrix)

The temperature dependence of the normalized magnetization due to the sites in the matrix
MBB, plotted in figure 8, is also typical for weakly ferromagnetic single-phase materials, with
a sharp drop to zero at T M

C for the almost decoupled system (JAB = 0.01). With increasing JAB

the magnetic transition becomes smoother, illustrating the effect of the exchange coupling on
the surface on the spins belonging to the matrix. In addition, one notes the increase of TC which
is correlated to that of the mutual exchange between the nanograin and the matrix, resulting from
the core grain. Such an effect agrees with the increase of TC which has been experimentally
observed on nanocrystalline alloys [2, 13]. The differences between the magnetization values
in the critical region decreases as the exchange coupling JAB increases from 1 to 50. This
difference can be seen if we plot (see the inset of figure 8) the different magnetization values
corresponding to T M

C for the almost decoupled system (JAB = 0.01), MTC versus the exchange
coupling JAB. One can observe a behaviour almost similar to that of the T M

C as estimated from
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Figure 9. Temperature dependence of normalized magnetization of the nanograin surface MAB for
a nanograin radius R = 6 and matrix–nanograin exchange coupling JAB = 0.01, 3, 10 and 50.

total magnetization fits. The dependence increases sharply from JAB = 0.01 up to 1 and then
reaches saturation for exchange couplings up to JAB = 50. Taking into account that the spin
moment equals 1 for every site, it means that, for JAB = 1, up to 40% of the spins in the
matrix are magnetically coupled at a temperature value (TC) at which they should have been
magnetically disordered in the absence of the coupling on the surface JAB. This means that,
when the nanograin and the matrix become magnetically coupled, several atomic layers in the
matrix are being polarized by the exchange coupling in the surface. Further enhancement of the
exchange coupling JAB does not modify the amount of spins in the matrix being magnetically
ordered by the interface layer.

4.3. AB (nanograin surface)

The temperature dependence of the normalized magnetization due to the A sites having at least
one B site as first-nearest-neighbour (the surface of the nanograin) MAB, plotted in figure 9,
is almost similar for low exchange coupling constants JAB and exhibits a different trend for
high JAB values, compared to the nanograin core. In fact, as JAB increases, the magnetization
curves show a more pronounced curvature, corresponding to a higher degree of magnetic
correlation between the spins in the nanograin surface. As expected, the influence of increasing
exchange coupling between the matrix and the nanograin is greater for the surface than for the
nanograin core, at higher values of JAB. As in the case of the nanograin core, fluctuations of
the magnetization, due to size effects, are observed above the Curie temperature.

4.4. BA (matrix–nanograin interface)

The most important effect of the increasing exchange coupling JAB is observed in the
temperature dependence of magnetization for the sites in the interface layer between the
nanograin and the matrix (B sites having at least one A site as first-nearest-neighbour) MBA,
plotted in figure 10. For JAB = 0.01, the magnetization curve is typical for weak ferromagnets
(i.e. with weakly coupled magnetic moments) as in the case of the matrix contribution MBB.
As the JAB coupling increases, the behaviour changes drastically. At high JAB values, the
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Figure 10. Temperature dependence of normalized magnetization of the matrix–nanograin
interface MBA for a nanograin radius R = 6 and matrix–nanograin exchange coupling JAB = 0.01,
3, 10 and 50.

behaviour is typical for highly magnetically correlated single-phase materials. One can also
observe that, contrary to the case of the matrix, for high JAB values (>10) the system exhibits
some magnetic fluctuations above TC due to size effects, which become more important as the
nanograin radius decreases, as in the case of the nanograin or surface.

When the surface anisotropy is considered, the previous results are rather similar; the two
main differences are concerned, first, by the more intense polarization effect coming from the
shape of the magnetization temperature dependence and, second, by the spin configuration
which is schematically represented in figure 11. One clearly observes a non-collinear spin
arrangement at the interface, due to the competition between surface anisotropy, which tends to
orient the spins normal to the surface, and magnetocrystalline anisotropy, which tends to orient
them along the y axis. It originates thus in a perturbed magnetic ordering of the interfacial shells
of the nanograin, because the spins in the interface are exchange-coupled to neighbouring shells
in the nanograin core and matrix. It is important to compare this spin-glass-like configuration
in the interfacial regions to the ‘throttled’ structure—like in the case of a nanoparticle which
results from the surface anisotropy competing with the bulk magnetocrystalline [21]. It is
noteworthy to add that this spin-glass-like ground state has been suggested from in-field
Mössbauer experiments performed on some soft magnetic nanocrystalline alloys [22].

5. Conclusions

The magnetic behaviour of a nanocrystalline alloy has been modelled by means of one
ferromagnetic nanograin embedded in a ferromagnetic matrix, both with cubic symmetry
environments. The low temperature spin ordering has been followed as a function of the
magnetic interaction between the two phases, using Monte Carlo simulation, in addition to
the different contributions to the total magnetization of the system, arising from the nanograin
core, nanograin surface, interface between the nanograin and the matrix, and from the matrix
itself. By fitting the temperature dependence of the total magnetization by means of a power
law, we estimated the Curie temperatures corresponding to the nanograin and the matrix,
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Figure 11. Spin configuration of the middle plane of the 153 cubic box containing the spherical
nanograin, R = 6 and KS = 3.0. The y axis corresponds to the vertical direction.

respectively. We have shown for the first time that, upon increasing the exchange coupling
between the spins in the surface and interface, the magnetic behaviour of different regions
of our system is governed by a spin polarization–depolarization mechanism which induces
magnetic correlation between the spins. In addition, the strong exchange coupling in the
surface originates a magnetic polarization inside the matrix which extends along at least two
successive atomic layers. The exchange coupling between spins in the surface and interface
influences differently each region of our system and this influence has been qualitatively
evaluated and correlated with the ratio between the number of sites in the surface and number
of sites in the nanograin core.
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